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HOW DO THE OPTICAL PROPERTIES OF THE MEASURED AEROSOLS DEPEND ON COMPOSITION (SOURCES), TRANSPORT, METEOROLOGY and TRANSFORMATION ?? — SOME CASE STUDIES
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1) What are the aerosol sources in the study area? Events selected based on high background o, levels (532 fine dry > 50 Mm-" for several hrs), indicating photochemical transformation and processing of primary emitted aerosols
2) What are the optical and chemical properties of the aerosols? AEROSOL SOURCES - Pollution events associated w/ Northerly flow (Houston Texas, mostly sources). Aerosol composition (PMEL) shows rapid increases in organics (POM) and non sea salt sulphate (nss SO,2)
IMPLICATIONS for AIR QUALITY - of toxic (i.e., smog), visibility impairment (haze) and CLIMATE - oxidized aerosols are more hygroscopic, scatter more light (> ®). Change in radiative properties = MAJOR CLIMATE ISSUE
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